
Solution Curves of Families of Polynomial Systems
Jakub Dlugosz, Kevin Mazzarella, Anja Schulz

University of Illinois at Chicago

Project Description

PHCpack is a software package for solving systems of polynomial
equations. One method the package can use to try to solve a given
system is homotopy continuation. To better understand how the
particular continuation method used by PHCpack performs near
"difficult" points, we visualize data generated by the software us-
ing Python and Matplotlib.

Python Package

To visualize data from PHCpack in a useful and aesthetically
pleasing manner, we created a Python package called VISCON.
The package consists of a collection of plotting functions along
with a text-based wizard. The wizard provides an intuitive inter-
face to the Python frontend phcpy. The code takes user-input poly-
nomial systems and a solution to one of those systems, reformats
it into PHCpack-parseable form, and then passes it to the PHC-
pack path tracker. Then, the data generated by the path tracker
is passed into a visualization function of the user’s choice. The
plotting functions range from allowing the user to plot multiple
polygonal curves on one axis, to generating 3d animations with
a custom colormap. To view the code, visit the project’s GitHub
repository: github.com/mrkrtkpf/viscon.

Example Continuation

Homotopy continuation is a numerical method for finding solu-
tions to systems of equations. Homotopy continuation finds solu-
tions to a system of equations G() =0 by deforming a system of
equations with known solutions F() = 0 little-by-little, tracking
the movement of the solutions as it goes.

Example

F() = 5+ 1= 0

Solutions: e
π
5, e

3π
5 , eπ, e

7π
5 , e

9π
5

G() = 5− 154+ 853− 2252+ 274− 120= 0

Solutions: ???

Homotopy Function

The function H defined by

H(, t) = (1− t)F()+ tG()

for t ∈ [0,1] defines a family of polynomials, one for each value
of t. The γ value is 1. Note that H “continuously deforms” F into
G:

H(,0) = (1− 0) ·F()+ 0 ·G() = F()

and
H(,1) = (1− 1) ·F()+ 1 ·G() = G().

Explanation of Algorithm

A solution to H(,0) = 0 will be near a solution to H(, t) = 0
if t is near 0. Hence Newton’s method can be used with any
of the solutions to F() = 0 as initial guess to find a solution to
H(, t) = 0 if t is small. This solution to H(, t) = 0 can then
be used as an initial guess in Newton’s method to find a solution
to H(, t′) = 0 for t′ near t. By incrementing t in small steps
and repeatedly using Newton’s method in this manner, eventually
a solution to H(,1) = G() = 0 can be found.

Animation of Path Tracker

Discussion

The path tracker tracks the solution  = e
7π
5 of F() = 0 to the

solution = 4 of G() = 0. The concentration of points near the
beginning and end of the path suggests that the path tracker takes
its smallest steps near the solutions to the start and target systems
and its largest steps in between the two. In the following plot of
all solution curves computed by phcpy, we can see that the path
tracker behaves in this manner when tracking the other solutions
as well.

All Solution Curves

Discussion

Plotting the solution curve in three dimensions with the third di-
mension corresponding to the step size reveals that there must be
other factors affecting how well the path tracker can accurately
predict successive solutions. In the plots below, we see that the
step size jumps around near the beginnings and ends of the paths.

Step Size vs Pole Modulus, Solution 4

Step Size vs Pole Modulus, Solution 3

Discussion

The plots above use color as a fourth dimension. To make New-
ton’s method converge more rapidly, the path tracker attempts to
predict the location of the next point on the solution curve using
a Padé approximant (a rational function in t) which approximates
the shape of the curve. The colors in the above plots correspond to
the moduli of the Padé approximant poles closest to the origin at
each path tracker step. When the moduli are small the path tracker
is forced to take smaller steps, as the accuracy of the prediction
degrades when t is near a singularity.

Padé Approximants

Discussion

The plot above shows Padé approximants calculated by phcpy su-
perimposed on the solution curve they are intended to fit. The
number next to each point is the modulus of the pole of the Padé
approximant calculated at that point which is closest to the origin.
For these points, the accuracy of the approximation is correlated
with the moduli of the closest poles. But it is apparent that the
accuracy of the predictor depends on other (unknown) factors as
well: the step size fluctuates at the beginning of the third solu-
tion curve even though the moduli of the closest poles remains
relatively constant.

Challenges

A number of challenges were overcome in order to produce the
end product. Scaling the data in three dimensions and finding
a way to represent a fourth dimension required implementing a
custom colormap for the data. Adapting Matplotlib’s animation
features for different presentations of data and types of plots also
proved to be challenging. Due to portability issues, several mock
user interfaces to the wizard written using PyQt, Python curses,
and ANSI terminal codes were created before settling on the final
text-based UI.

References

Morgan, Alexander. Solving Polynomial Systems Using
Continuation for Engineering and Scientific Problems. Prentice
Hall, 1987.

Baker, George A., Jr. and Graves-Morris, Peter. Padé
Approximants. Cambridge UP, 1996.

Bliss, Nathan and Verschelde, Jan. "The Method of Gauss-Newton
to Compute Power Series Solutions of Polynomial Homotopies."
Linear Algebra and its Applications, vol. 542, 2016, pp. 569-588.

http://mcl.math.uic.edu/


