
Visualizing the Fourth Dimension with Virtual Reality
David Dumas Brandon Reichman

University of Illinois at Chicago

Mathematical
Computing
Laboratory

Summary

We created a virtual reality program that allows the user to view and rotate
projections of four-dimensional polyhedra and surfaces in four-dimensional
space. We wanted the user to be able to interact with simple objects, such
as a cube, in a way that feels natural, making the idea of four-dimensional
geometry accessible to a wide audience of virtual reality users.
To make this program, we used the development environment and 3D graph-
ics engine Unity [2] and the Oculus virtual reality system including the Rift
headset and real time hand position tracking Touch controllers. The pro-
gram itself was written in the C# programming language.
The program was created in the Fall semester of 2017 as a semester project
with faculty advisor David Dumas in the Mathematical Computing Labora-
tory, and was funded by a grant from the UIC College of Liberal Arts and
Sciences Undergraduate Research Initiative (LASURI).

Motivation

One can not normally manipulate four-dimensional shapes, as we are stuck
inside of a three-dimensional world. However, there are ways to use three-
dimensional space to look at four-dimensional objects. For example, when
looking at a shadow of a three-dimensional object, one is looking at a two-
dimensional projection. This idea can be extended to the fourth dimension,
so the shadow of a four-dimensional object is three-dimensional.
Virtual reality gives us the capability to calculate and draw these three-
dimensional projections and to put them inside of a three dimensional vir-
tual environment. This gives the user the ability to view these projections
from any orientation and directly interact with the objects.

4D Objects

5-Cell: The 5-cell is the four-dimensional analogue to a tetrahedron. This
object consists of 5 three-dimensional tetrahedron cells, 10 two-dimensional
triangle faces, 10 edges, and 5 vertices.

8-Cell: The 8-cell is the four-dimensional analogue of a cube. It is
also called a hypercube or a tesseract. This object consists of 8 three-
dimensional cube cells, 24 two-dimensional square faces, 32 edges, and
16 vertices.

RP2: This is the real projective plane, a non-orientable surface that is
closed, meaning is has no edges. In a sense, it is analogous to the Möbius
strip, but with no edges. It is impossible to embed this object in three-
dimensional space without self-intersections, however it can be embedded
in four-dimensional space. Our program contains one such embedding,
which is constructed using polynomial equations.

RP2 Cut Open: The program can also display another RP2 mesh which
been cut open along a Möbius strip, leaving a disk behind. In viewing this
object and comparing it to the full RP2 mesh, it is a fun exercise to convince
yourself that the missing part is really a Möbius strip.

Flat Torus: This is a torus embedded in four-dimensional space using the
following function: (s, t) 7−→ (coss,sins,cos t,sin t). This embedding has
two evident families of circles on the torus which are perpendicular at every
point. This mesh in four-dimensional space is most compatible with the
intrinsic geometry of the torus, which is Euclidean. This torus in four-
dimensional space is flat, whereas the usual circular torus of revolution in
three-dimensional space is curved. This torus in four-dimensions looks the
same at every point. It doesn’t have an ”inner” and ”outer” part that look
different, like a torus in three-dimensions does.

Rotations

Rotations of objects can be represented by matrices. In four dimensions, there is enough space
for two simultaneous, independent rotations. For example, one can rotate a four-dimensional
object on the XY-plane by α degrees and on the ZW-plane by β degrees, with X, Y, and Z
referring to the three directions in three-dimensional space and W being the fourth direction in
four-dimensional space. To do this rotation, one would apply the following matrix.

cosα −sinα 0 0
sinα cosα 0 0

0 0 cosβ −sinβ

0 0 sinβ cosβ


Our program allows the user to control these two independent rotations by turning their right
hand α degrees and turning their left hand β degrees.
It is easy to rotate objects in three dimensions in VR by allowing the user to grab and turn the
object with a hand controller. Developing a natural way to control four-dimensional rotations
using hand controllers has been one of the main challenges in this project. Our approach
is to have the user rotate their hands as if they are turning two ”dials” that control the two
independent rotation planes.

Shown above is an orthographic projection of a hypercube which has had various four-
dimensional rotations applied to it. Our program allows for composite rotations, meaning
the user can preform successive rotations in different combinations of planes.

4D Mesh Representations

Selecting data structures and file formats for representing four-dimensional objects was an-
other important aspect of the project. To make the program more versatile, we wanted it to
accept arbitrary objects stored in a data file. For three-dimensional objects, there already ex-
ist many file formats that represent these objects as triangular meshes, such as STL, OBJ,
3DS, and BLEND files. Since we are only considering two-dimensional triangular meshes in
four-dimensional space, compared to these existing formats we only needed to add an extra
coordinate to each vertex of each triangle. We learned that the OBJ mesh file format (Wave-
front Object format) allows for a fourth coordinate to be added, and that these extra data are
ignored by most programs when rendering the object. OBJ files are also text-based, so it is
relatively easy to parse through for the information we need.
Our program interprets these 4D OBJ files using a custom parser to extract the extra vertex
coordinate data. It then stores the fourth coordinate in an unused part of the the object’s
texture data within the Unity 3D engine. In this way, the fourth coordinate is automatically
passed to a custom shader we developed. The shader unpacks the extra coordinate from the
texure variables, applies the necessary four-dimensional rotations, and projects the object back
to 3D space. This allows the use of 4D meshes with no changes to the Unity graphics engine.

Controls

Oculus Touch controller diagrams adapted from [1].

Challenges

Creating a virtual reality program that allows one to interact with four-
dimensional shapes presented a number of challenges.
We had to customize Unity’s existing shader to allow for four-dimensional isome-
tries to be applied to our objects.
Since we did not have any four-dimensional meshes to start with, we also had to
create our own OBJ files.
Unity’s engine isn’t expecting four-dimensional objects to be rendered within it,
and some rendering artifacts remain as a result of our shader-based approach. The
most significant of these regards lighting: At present, the shading and highlights
on the surfaces do not move realistically as the object is rotated.

Future Objectives

While we made significant progress during the semester, there are still aspects
of the program we would like to continue developing and improving on. These
include:
I Creating more four-dimensional OBJ files to be viewed in the program
I Creating a user-friendly way to import new objects into the program
I Improving the user interface to allow for more natural grabbing and turning to

specify 3D rotations
I Adding support for flexible objects that the user can interact with

Some problems we did not have time to solve, such as the lighting issue. In future
development, we hope to be able to recalculate the vectors normal to the object
faces within the shader. This would result in more realistic lighting and shading.

References

[1] Oculus (Developer documentation). https://developer.oculus.com/.
Accessed December 1, 2017.

[2] Unity (version 2017.1.1f1). https://unity3d.com. Accessed December 1,
2017.

http://mcl.math.uic.edu/


