Circle Packing Visualization

Kimberly Kim & Jacob Lewis
August 5th, 2016

Abstract
This is the final report of a summer 2016 project of the Mathematical Computing
Laboratory. Alongside us was our faculty supervisor, Prof. David Dumas, and our
graduate mentor, Ellie Dannenberg. The goal of our project was to visualize
circle packing projective structures and explore their moduli spaces by building
an interactive GUI python program.

A Brief Introduction to Circle Packing:
There are several notions of circle packing in common use. In this project, our convention is
that a circle packing is an arrangement of circles in the plane with tangencies but no overlaps,
and where the gaps in between the circles are curvilinear triangles.

We referenced the paper by Kojima, Mizushima and Tan heavily throughout our study,
and they said, “Roughly, a circle packing on a closed orientable surface Xg of genus g, is a

collection of closed disks on the surface such that the interiors of any two distinct disks are
disjoint and the collection of interstices consists of a finite number of triangular interstices each
bounded by three circular arcs” (Kojima, Mizushima & Tan, 356). And “for a circle packing on
>g, we assign a vertex to each circle and an edge joining two vertices for each tangency point

between two circles. The graph t on Xgobtained thus triangulates Xg and this is called the

nerve, or the dual graph, of the circle packing” (Kojima, Mizushima & Tan, 356).

Figure 1: The dual graph is in the blue, and the red circles show the circles with 6 valence (i.e.
tangent to six other circles)



MGobius Equivalence:

Two circle packings are equivalent if they are related by a mobius equivalence, or linear
fractional transformation. The following sequence of images are of a circle packing becoming
inverted by mobius transformations, therefore, each picture shows circle packings that are
essentially “the same.”

1

Figure 2: Equivalent circle packing related by mobius transformations. All of the images above
are screenshots from the application.



The Cross Ratio Parameter:

In a circle packing’s dual graph, there is a real number, a cross ratio invariant, associated with
each edge. So “knowing the developing image of one of the interstices determines the
developing image of the other interstices” (Kojima, Mizushima & Tan, 356). We call y(a, b, c,d)

the cross ratio of the four complex numbers a,b,c,and d from the four circles as shown in the
figure below. The cross ratio invariant of an edge E is defined to be y(a, b, c,d). The four
complex numbers (a, b, c,and d) are the tangency points between circles as shown in Figure 3
(left). Then we normalize the 4 local tangent circles by taking a to zero, e to one, and d to

infinity, as shown in Figure 3 (right). And y(a,b,c,d)produces x , the cross ratio invariant or

edge E.

xa,b,c,d)= (a=c)b—d)/(a—d)(b—c)

e

Figure 3: Configuration of circles corresponding to an edge of the dual graph: In the packing
(left), and normalized (right)

Motivation:

We consider the moduli space of a circle packing projective structure to be the set of
equivalence classes of circle packings with a given dual graph, where equivalence refers to the
action of moébius transformations described above. This moduli space has interesting geometric
properties. Circle Packings can be reshaped through moébius transformations while still
retaining their original cross ratios. This project focused on creating tools for constructing circle
packings and exploring the moduli space of circle packing projective structures on a surface.



B Bubble Wrap 0.2.5 (pre-alpha)

File

[+ ©
2 &
@ o

()
. Valence 12: 2 vertices @ @

Valence 6 46 vertices
Packing 0 hd
solve surface select packing

invert packing

Figure 4: Screenshot of the app with a Fuchsian circle packing

Approach:

We wanted to both visualize the 3 dimensional surface as well as show the circle packing that it
produced. We used a data structure called a doubly connected edge list (DCEL), which keeps a
record of each face, edge and vertex of surface, to represent a dual-graph of a circle packing
(We referenced de Berg-Cheong-von Kreveld-Overmars text for the structure of DCEL). The
DCEL consists of vertex, edge, and face objects linked to one another by pointers (references).
We were given a DCEL implementation in python that did not store coordinates in 3-space. We
adapted this implementation by attaching coordinates to each vertex object and included
support for saving this information to a JSON file. In addition, we created parameterized
coordinate generators. We created two generators for both the cylinder and the torus. The
coordinate generators take 4 parameters as input: two static scalar values and two variables
that varied between 0 and 1. The two variables determined where the coordinates should be
positioned and scaled. A typical invocation of our CoordinateVertex class to generate part of a
right circular cylinder is as follows:

def circ cylinder param(h, r, i, J):
ang = 2*math.pi*i
X, z = r*math.cos(ang), r*math.sin(ang)
y = h*j
return CoordinateVertex (coords=(x, y, 2z))



Interpreting a Circle Packing:

A circle packing is stored in a JSON based file, and it is created with the information to
reproduce the DCEL object in memory. It also contains cross ratio information generated while
solving for a circle packing. We represent a circle as an anti-mobius map, which is stored as a
2x2 matrix. Then applying mobius transformations to the circles becomes a string of
consecutive 2x2 matrix compositions.

Optimization:

The program that we wrote needed to maintain a level of responsiveness while computing
complex moébius transformations for each circle on the screen. For a typical genus 2 circle
packing of approximately 50 vertices, about 20,000 circles are loaded into memory. This means
that 20,000 mo6bius transformation would need to be calculated every frame. To keep the
application responsive, we strived to keep the frame-rate above 15fps. Which meant that the
computer would need to effectively compute at least 300,000 mdbius transformation every
second. Since python can only run on a single core, we ran into a barrier.

Our solution to keep the application responsive was to have two separate lists of circle objects.
The first list would contain all 20,000 original circles. The second list contained only circles
visible to the user in its current state. If the user modified the circle packing in any way, a
second thread would start a calculation in the background to find the appropriate circles to
display in its new state and update the second list. This reduced 20,000 circles down to around
700 circles (on average). It is much more reasonable to meet 15fps with 700 circles with
python. In the future, we hope to eliminate as many of the performance restrictive python calls
as possible. If we were to use numpy purely, we could probably raise the number of visible
circles above 300,000 while maintaining at least 15fps.

Responsive Mouse-driven Mobius transformations:

Applying a mobius transformation to a circle packing does not change any of the cross-ratios, so
the identity of the circle packing remains the same. One way we allow the user to apply a
mobius transformation to the picture is to allow the placement of two fixed points, and let the
user select the image of a third point by clicking and dragging with the mouse. This makes
seeing different transformations of the “same” circle packing possible.

References:

S. Kojima, S. Mizushima, and S.P. Tan. Circle Packings on
Surfaces With Projective Structures. J. Differential Geometry
63(2003), 349-397.

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applications. 3rd Ed.
(2008) Springer.



